Published in

IOP Publishing, Measurement Science and Technology, 12(34), p. 125120, 2023

DOI: 10.1088/1361-6501/acf38d

Links

Tools

Export citation

Search in Google Scholar

An intensity-enhanced LiDAR SLAM for unstructured environments

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Abstract Traditional LiDAR simultaneous localization and mapping (SLAM) methods rely on geometric features such as lines and planes to estimate pose. However, in unstructured environments where geometric features are sparse or absent, point cloud registration may fail, resulting in decreased mapping and localization accuracy of the LiDAR SLAM system. To overcome this challenge, we propose a comprehensive LiDAR SLAM framework that leverages both geometric and intensity information, specifically tailored for unstructured environments. Firstly, we adaptively extract intensity features and construct intensity constraints based on degradation detection, and then propose a multi-resolution intensity map construction method. The experimental results show that our method achieves a 55% accuracy improvement over the pure geometric LiDAR SLAM system and exhibits superior anti-interference capability in urban corner scenarios. Compared with Intensity-SLAM, the advanced intensity-assisted LiDAR SLAM, our method achieves higher accuracy and efficiency.