Published in

Nature Research, Communications Earth & Environment, 1(4), 2023

DOI: 10.1038/s43247-023-00970-8

Links

Tools

Export citation

Search in Google Scholar

A redistribution of nitrogen fertiliser across global croplands can help achieve food security within environmental boundaries

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

AbstractA major societal challenge is to produce sufficient food for a growing global population while simultaneously reducing agricultural nitrogen pollution to within safe environmental boundaries. Here we use spatially-resolved, process-based simulations of cereal cropping systems (at 0.5° resolution) to show how redistribution of nitrogen fertiliser usage could meet this challenge on a global scale. Focusing on major cereals (maize, wheat and rice), we find that current production could be (i) maintained with a 32% reduction in total global fertiliser use, or (ii) increased by 15% with current nitrogen fertiliser levels. This would come with substantial reductions in environmental nitrogen losses, allowing cereal production to stay within environmental boundaries for nitrogen pollution. The more equal distribution of nitrogen fertiliser across global croplands would reduce reliance on current breadbasket areas, allow regions such as Sub-Saharan Africa to move towards self-sufficiency and alleviate nitrogen pollution in East Asia and other highly fertilised regions.