Published in

Optica, Optics Express, 12(31), p. 19818, 2023

DOI: 10.1364/oe.489158

Links

Tools

Export citation

Search in Google Scholar

Pulsed stimulated Brillouin microscopy

Journal article published in 2023 by Desmond M. Chow ORCID, Seok-Hyun Yun
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Red circle
Preprint: archiving forbidden
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Stimulated Brillouin scattering is an emerging technique for probing the mechanical properties of biological samples. However, the nonlinear process requires high optical intensities to generate sufficient signal-to-noise ratio (SNR). Here, we show that the SNR of stimulated Brillouin scattering can exceed that of spontaneous Brillouin scattering with the same average power levels suitable for biological samples. We verify the theoretical prediction by developing a novel scheme using low duty cycle, nanosecond pulses for the pump and probe. A shot noise-limited SNR over 1000 was measured with a total average power of 10 mW for 2 ms or 50 mW for 200 µs integration on water samples. High-resolution maps of Brillouin frequency shift, linewidth, and gain amplitude from cells in vitro are obtained with a spectral acquisition time of 20 ms. Our results demonstrate the superior SNR of pulsed stimulated Brillouin over spontaneous Brillouin microscopy.