Published in

Oxford University Press, Monthly Notices of the Royal Astronomical Society, 2023

DOI: 10.1093/mnras/stad3857

Links

Tools

Export citation

Search in Google Scholar

DEATHSTAR: A system for confirming planets and identifying false positive signals in TESS data using ground-based time domain surveys

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Abstract We present a technique for verifying or refuting exoplanet candidates from the Transiting Exoplanet Survey Satellite (TESS) mission by searching for nearby eclipsing binary stars using higher-resolution archival images from ground-based telescopes. Our new system is called Detecting and Evaluating A Transit: finding its Hidden Source in Time-domain Archival Records (DEATHSTAR). We downloaded time series of cutout images from two ground-based telescope surveys (the Zwicky Transient Facility, or ZTF, and the Asteroid Terrestrial-impact Last Alert System, or ATLAS), analyzed the images to create apertures and measure the brightness of each star in the field, and plotted the resulting light curves using custom routines. Thus far, we have confirmed on-target transits for 17 planet candidates, and identified 35 false positives and located their actual transit sources. With future improvements to automation, DEATHSTAR will be scaleable to run on the majority of TOIs.