Published in

American Institute of Physics, The Journal of Chemical Physics, 18(158), 2023

DOI: 10.1063/5.0152015

Links

Tools

Export citation

Search in Google Scholar

Magnetic functionalization of ZnO nanoparticles surfaces via optically generated methyl radicals

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

The combination of nuclear and electron magnetic resonance techniques, in pulse and continuous wave regimes, is used to unravel the nature and features of the light-induced magnetic state arising at the surface of chemically prepared zinc oxide nanoparticles (NPs) occurring under 120 K when subjected to a sub-bandgap (405 nm) laser excitation. It is shown that the four-line structure observed around g ∼ 2.00 in the as-grown samples (beside the usual core-defect signal at g ∼ 1.96) arises from surface-located methyl radicals (•CH3), originating from the acetate capped ZnO molecules. By functionalizing the as-grown zinc oxide NPs with deuterated sodium acetate, the •CH3 electron paramagnetic resonance (EPR) signal is replaced by trideuteromethyl (•CD3). For •CH3, •CD3, and core-defect signals, an electron spin echo is detected below ∼100 K, allowing for the spin–lattice and spin–spin relaxation-time measurements for each of them. Advanced pulse-EPR techniques reveal the proton or deuteron spin-echo modulation for both radicals and give access to small unresolved superhyperfine couplings between adjacent •CH3. In addition, electron double resonance techniques show that some correlations exist between the different EPR transitions of •CH3. These correlations are discussed as possibly arising from cross-relaxation phenomena between different rotational states of radicals.