Published in

IOS Press, Semantic Web: Interoperability, Usability, Applicability, p. 1-32, 2022

DOI: 10.3233/sw-223096

Links

Tools

Export citation

Search in Google Scholar

Food process ontology requirements

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

People often value the sensual, celebratory, and health aspects of food, but behind this experience exists many other value-laden agricultural production, distribution, manufacturing, and physiological processes that support or undermine a healthy population and a sustainable future. The complexity of such processes is evident in both every-day food preparation of recipes and in industrial food manufacturing, packaging and storage, each of which depends critically on human or machine agents, chemical or organismal ingredient references, and the explicit instructions and implicit procedures held in formulations or recipes. An integrated ontology landscape does not yet exist to cover all the entities at work in this farm to fork journey. It seems necessary to construct such a vision by reusing expert-curated fit-to-purpose ontology subdomains and their relationship, material, and more abstract organization and role entities. The challenge is to make this merger be, by analogy, one language, rather than nouns and verbs from a dozen or more dialects which cannot be used directly in statements about some aspect of the farm to fork journey without expensive translation or substantial dialect education in order to understand a particular text or domain of knowledge. This work focuses on the ontology components – object and data properties and annotations – needed to model food processes or more general process modelling within the context of the Open Biological and Biomedical Ontology Foundry and congruent ontologies. Ideally these components can be brought together in a general process ontology that can be specialized not only for the food domain but for carrying out other protocols as well. Many operations involved in food identification, preparation, transportation and storage – shaking, boiling, mixing, freezing, labeling, shipping – are actually common to activities from manufacturing and laboratory work to local or home food preparation.