Published in

Wiley, Advanced Materials Interfaces, 29(10), 2023

DOI: 10.1002/admi.202300225

Links

Tools

Export citation

Search in Google Scholar

Enhancing the Biocompatibility of Additively Manufactured Ti‐6al‐4 V Eli with Diamond‐Like Carbon Coating

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

AbstractOrthopedic implants provide patients with an opportunity to regain functionality lost from illness, disease, or injury. Recent advancements in additive manufacturing (AM) techniques have allowed for the increased customization of Ti‐6Al‐4V ELI (extra low interstitials) implants to complement natural variations in the human anatomy. Yet, the low bioactivity of Ti‐6Al‐4 V ELI and possible adverse effects from the leeching of aluminum and vanadium complicate the post‐operation recovery process. In this work, Ti‐6Al‐4 V ELI samples are printed using the electron beam melt technique in two directions and coated with diamond‐like carbon (DLC) to examine whether their biological properties can be improved. By conducting in vitro studies with Saos‐2 osteosarcoma cells, the effects of morphology and surface chemistry are correlated to the bioactivities of the coated and uncoated samples. The outcome of the study suggested that DLC coating is a viable method for controlling the surface bioactivity of a material. It indicates that a carbon coating, along with an appropriate topography, has the potential to promote the proliferation and maturity of bone cells and hence enhance the performance of additively manufactured products in next‐generation biomedical applications.