Published in

Association for Computing Machinery (ACM), ACM Transactions on Graphics, 3(42), p. 1-18, 2023

DOI: 10.1145/3582001

Links

Tools

Export citation

Search in Google Scholar

Data-driven Digital Lighting Design for Residential Indoor Spaces

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Conventionally, interior lighting design is technically complex yet challenging and requires professional knowledge and aesthetic disciplines of designers. This article presents a new digital lighting design framework for virtual interior scenes, which allows novice users to automatically obtain lighting layouts and interior rendering images with visually pleasing lighting effects. The proposed framework utilizes neural networks to retrieve and learn underlying design guidelines and the principles beneath the existing lighting designs, e.g., a newly constructed dataset of 6k 3D interior scenes from professional designers with dense annotations of lights. With a 3D furniture-populated indoor scene as the input, the framework takes two stages to perform lighting design: (1) lights are iteratively placed in the room; (2) the colors and intensities of the lights are optimized by an adversarial scheme, resulting in lighting designs with aesthetic lighting effects. Quantitative and qualitative experiments show that the proposed framework effectively learns the guidelines and principles and generates lighting designs that are preferred over the rule-based baseline and comparable to those of professional human designers.