Published in

MDPI, Remote Sensing, 9(14), p. 2017, 2022

DOI: 10.3390/rs14092017

Links

Tools

Export citation

Search in Google Scholar

Evaluation of Land Surface Phenology for Autumn Leaf Color Change Based on Citizen Reports across Japan

Journal article published in 2022 by Narumasa Tsutsumida ORCID, Nagai Shin, Tomoaki Miura ORCID
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Autumn foliage color is an important phenological characteristic associated with climate and appeals to populations as a cultural ecosystem service (CES). Land surface phenology (LSP) analyzed using time-series remotely sensed imagery can facilitate the monitoring of autumn leaf color change (ALCC); however, the monitoring of autumn foliage by LSP approaches is still challenging because of complex spatio-temporal ALCC patterns and observational uncertainty associated with remote sensing sensors. Here, we evaluated the performance of several LSP analysis approaches in estimation of LSP-based ALCCs against the ground-level autumn foliage information obtained from 758 sightseeing (high CES) sites across Japan. The ground information uniquely collected by citizens represented ALCC stages of greening, early, peak, late, and defoliation collected on a daily basis. The ALCC was estimated using a second derivative approach, in which normalized difference vegetation index (NDVI), kernel normalized difference vegetation index (kNDVI), enhanced vegetation index (EVI), two-band enhanced vegetation index (EVI2), and green red vegetation index (GRVI) were applied based on MODerate resolution Imaging Spectroradiometer (MODIS) MOD09A1 with four (Beck, Elmore, Gu, and Zhang) double logistic smoothing methods in 2020. The results revealed inconsistency in the estimates obtained using different analytical methods; those obtained using EVI with the Beck model estimated the peak stage of the ALCC relatively well, while the estimates obtained using other indices and models had high discrepancies along with uncertainty. Our study provided insights on how the LSP approach can be improved toward mapping the CESs offered by autumn foliage.