Published in

European Geosciences Union, Atmospheric Chemistry and Physics, 4(22), p. 2333-2349, 2022

DOI: 10.5194/acp-22-2333-2022

Links

Tools

Export citation

Search in Google Scholar

Biogeochemical and biophysical responses to episodes of wildfire smoke from natural ecosystems in southwestern British Columbia, Canada

Journal article published in 2022 by Sung-Ching Lee ORCID, Sara H. Knox, Ian McKendry, T. Andrew Black ORCID
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Area burned, number of fires, seasonal fire severity, and fire season length are all expected to increase in Canada, with largely unquantified ecosystem feedbacks. However, there are few observational studies measuring ecosystem-scale biogeochemical (e.g., carbon dioxide exchanges) and biophysical (e.g., energy partitioning) properties during smoke episodes and hence assessing responses of gross primary production (GPP) to changes in incoming diffuse photosynthetically active radiation (PAR). In this study, we leveraged two long-term eddy covariance measurement sites in forest and wetland ecosystems to study four smoke episodes, which happened at different times and differed in length, over 4 different years (2015, 2017, 2018, and 2020). We found that the highest decrease in shortwave irradiance due to smoke was about 50 % in July and August but increased to about 90 % when the smoke arrived in September. When the smoke arrived in the later stage of summer, impacts on sensible and latent heat fluxes were very different than the earlier ones. Smoke generally increased the diffuse fraction (DF) from ∼ 0.30 to ∼ 0.50 and turned both sites into stronger carbon dioxide (CO2) sinks with increased GPP up to ∼ 18 % and ∼ 7 % at the forest and wetland site, respectively. However, when DF exceeded 0.80 as a result of dense smoke, both ecosystems became net CO2 sources as total PAR dropped to low values. The results suggest that this kind of natural experiment is important for validating future predictions of smoke–productivity feedbacks.