Published in

EDP Sciences, Astronomy & Astrophysics, (656), p. L8, 2021

DOI: 10.1051/0004-6361/202140944

Links

Tools

Export citation

Search in Google Scholar

Solar Orbiter observations of the structure of reconnection outflow layers in the solar wind

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Red circle
Preprint: archiving forbidden
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

We briefly review an existing model of the structure of reconnection layers which predicts that several more distinct layers, in the form of contact discontinuities, rotational Alfvèn waves, or slow shocks, should be identifiable in solar wind reconnection events than are typically reported in studies of reconnection outflows associated with bifurcated current sheets. We re-examine this notion and recast the identification of such layers in terms of the changes associated with the boundaries of both the ion and electron outflows from the reconnection current layers. We then present a case study using Solar Orbiter MAG and SWA data, which provides evidence consistent with this picture of extended multiple layers around the bifurcated current sheet. A full confirmation of this picture requires more detailed examination of the particle distributions in this and other events. However, we believe this concept is a valuable framework for considering the nature of reconnection layers in the solar wind.