Published in

Oxford University Press, Monthly Notices of the Royal Astronomical Society, 3(509), p. 3779-3797, 2021

DOI: 10.1093/mnras/stab2635

Links

Tools

Export citation

Search in Google Scholar

A consistent reduced-speed-of-light formulation of cosmic ray transport valid in weak- and strong-scattering regimes

Journal article published in 2021 by Philip F. Hopkins ORCID, Jonathan Squire ORCID, Iryna S. Butsky
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

ABSTRACT We derive a consistent set of moment equations for cosmic ray (CR)-magnetohydrodynamics, assuming a gyrotropic distribution function (DF). Unlike previous efforts, we derive a closure, akin to the M1 closure in radiation hydrodynamics (RHD), that is valid in both the nearly isotropic DF and/or strong-scattering regimes, and the arbitrarily anisotropic DF or free-streaming regimes, as well as allowing for anisotropic scattering and transport/magnetic field structure. We present the appropriate two-moment closure and equations for various choices of evolved variables, including the CR phase space DF f, number density n, total energy e, kinetic energy ϵ, and their fluxes or higher moments, and the appropriate coupling terms to the gas. We show that this naturally includes and generalizes a variety of terms including convection/fluid motion, anisotropic CR pressure, streaming, diffusion, gyro-resonant/streaming losses, and re-acceleration. We discuss how this extends previous treatments of CR transport including diffusion and moment methods and popular forms of the Fokker–Planck equation, as well as how this differs from the analogous M1-RHD equations. We also present two different methods for incorporating a reduced speed of light (RSOL) to reduce time-step limitations: In both, we carefully address where the RSOL (versus true c) must appear for the correct behaviour to be recovered in all interesting limits, and show how current implementations of CRs with an RSOL neglect some additional terms.