Published in

Cambridge University Press, Journal of Plasma Physics, 5(88), 2022

DOI: 10.1017/s0022377822000836

Links

Tools

Export citation

Search in Google Scholar

A measurement of the effective mean free path of solar wind protons

Journal article published in 2022 by Jesse T. Coburn ORCID, Christopher H. K. Chen ORCID, Jonathan Squire ORCID
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Weakly collisional plasmas are subject to nonlinear relaxation processes, which can operate at rates much faster than the particle collision frequencies. This causes the plasma to respond like a magnetised fluid despite having long particle mean free paths. In this Letter the effective collisional mechanisms are modelled in the plasma kinetic equation to produce density, pressure and magnetic-field responses to compare with spacecraft measurements of the solar wind compressive fluctuations at 1 AU. This enables a measurement of the effective mean free path of the solar wind protons, found to be ${≈ }4 \times 10^{5}$ km, which is approximately $10^{3}$ times shorter than the collisional mean free path. These measurements are shown to support the effective fluid behaviour of the solar wind at scales above the proton gyroradius and demonstrate that effective collision processes alter the thermodynamics and transport of weakly collisional plasmas.