Published in

Oxford University Press, Monthly Notices of the Royal Astronomical Society, 1(513), p. 282-295, 2022

DOI: 10.1093/mnras/stac895

Links

Tools

Export citation

Search in Google Scholar

Numerical study of cosmic ray confinement through dust resonant drag instabilities

Journal article published in 2022 by Suoqing Ji ORCID, Jonathan Squire ORCID, Philip F. Hopkins ORCID
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

ABSTRACT We investigate the possibility of cosmic ray (CR) confinement by charged dust grains through resonant drag instabilities (RDIs). We perform magnetohydrodynamic particle-in-cell simulations of magnetized gas mixed with charged dust and cosmic rays, with the gyro-radii of dust and GeV CRs on ∼au scales fully resolved. As a first study, we focus on one type of RDI wherein charged grains drift super-Alfvénically, with Lorentz forces strongly dominating over drag forces. Dust grains are unstable to the RDIs and form concentrated columns and sheets, whose scale grows until saturating at the simulation box size. Initially perfectly streaming CRs are strongly scattered by RDI-excited Alfvén waves, with the growth rate of the CR perpendicular velocity components equaling the growth rate of magnetic field perturbations. These rates are well-predicted by analytic linear theory. CRs finally become isotropized and drift at least at ∼vA by unidirectional Alfvén waves excited by the RDIs, with a uniform distribution of the pitch angle cosine μ and a flat profile of the CR pitch angle diffusion coefficient Dμμ around μ = 0, without the ‘90○ pitch angle problem.’ With CR feedback on the gas included, Dμμ decreases by a factor of a few, indicating a lower CR scattering rate, because the backreaction on the RDI from the CR pressure adds extra wave damping, leading to lower quasi-steady-state scattering rates. Our study demonstrates that the dust-induced CR confinement can be very important under certain conditions, e.g. the dusty circumgalactic medium around quasars or superluminous galaxies.