Published in

National Academy of Sciences, Proceedings of the National Academy of Sciences, 27(118), 2021

DOI: 10.1073/pnas.2026152118

Links

Tools

Export citation

Search in Google Scholar

Loss of function of a DMR6 ortholog in tomato confers broad-spectrum disease resistance

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Red circle
Preprint: archiving forbidden
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Significance Susceptibility (S) genes are plant genes that facilitate pathogen infection. Inactivation of S genes has been considered a promising strategy to obtain broad-spectrum and durable resistance in crops. We characterized two orthologs of the Arabidopsis S gene DMR6 in tomato: SlDMR6-1 and SlDMR6-2 . We show that SlDMR6-1, but not SlDMR6-2, is associated with plant immunity. Remarkably, Sldmr6-1 mutants display enhanced resistance to bacterial, oomycete, and fungal pathogens. This phenotype correlates with increased levels of the defense hormone salicylic acid (SA) and enhanced transcriptional activation of plant immune responses. We also demonstrate that SlDMR6-1 and SlDMR6-2 convert SA into its inactive form, 2,5-DHBA, indicating that they play a role in SA homeostasis.