Published in

American Institute of Physics, Applied Physics Letters, 6(119), 2021

DOI: 10.1063/5.0064278

Links

Tools

Export citation

Search in Google Scholar

Thermal stability of epitaxial α-Ga2O3 and (Al,Ga)2O3 layers on m-plane sapphire

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

Here, we have explored the thermal stability of α-(Al,Ga)2O3 grown by the molecular-beam epitaxy on m-plane sapphire under high-temperature annealing conditions for various Al compositions (i.e., 0%, 46%, and 100%). Though uncapped α-Ga2O3 undergoes a structural phase transition to the thermodynamically stable β-phase at high temperatures, we find that an aluminum oxide cap grown by atomic layer deposition preserves the α-phase. Unlike uncapped α-Ga2O3, uncapped α-(Al,Ga)2O3 at 46% and 100% Al content remain stable at high temperatures. We quantify the evolution of the structural properties of α-Ga2O3, α-(Al,Ga)2O3, and α-Al2O3 and the energy bandgap of α-Ga2O3 up to 900 °C. Throughout the anneals, the α-Ga2O3 capped with aluminum oxide retains its high crystal quality, with no substantial roughening.