Published in

Bentham Science Publishers, Current Pharmaceutical Design, (30), 2023

DOI: 10.2174/0113816128290636231129074039

Links

Tools

Export citation

Search in Google Scholar

Simultaneous Study of Analysis of Anti-inflammatory Potential of Dryopteris ramosa (C. Hope) C. Chr. using GC- Mass and Computational Modeling on the Xylene- Induced Ear Oedema in Mouse Model

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Introduction:: In the present study, we aimed to investigate the extraction and identification of the potential phytochemicals from the Methanolic Extract of Dryopteris ramosa (MEDR) using GC-MS profiling for validating the traditional uses of MEDR its efficacy in inflammations by using in-vitro, in-vivo and in silico approaches in anti-inflammatory models. background: The search for a safe alternative therapy utilizing herbal resources has received emphasis in recent decades since herbs play a vital role in the contemporary medical system and operate as a massive worldwide reservoir for possibly effective therapeutic compounds. One of the vital therapeutic plants, Dryopteris ramosa has a remarkable medicinal efficacy against various ailments. Method:: GC-MS analysis confirmed the presence of a total of 59 phytochemical compounds. The human red blood cells (HRBC) membrane stabilization assay and heat-induced hemolysis method were used as in-vitro anti-inflammatory activity of the extract. The in-vivo analysis was carried out through the Xylene-induced mice ear oedema method. It was found that MEDR at a concentration of 20 μg, 30 μg, and 40 μg showed 35.45%, 36.01%, and 36.33% protection to HRBC in a hypotonic solution, respectively. At the same time, standard Diclofenac at 30 μg showed 45.31% protection of HRBC in a hypotonic solution. Result:: The extract showed inhibition of 25.32%, 26.53%, and 33.31% cell membrane lysis at heating at 20 μg, 30 μg, and 40 μg, respectively. In comparison, standard Diclofenac at 30 μg showed 50.49% inhibition of denaturation to heat. Methanolic extract of the plant exhibited momentous inhibition in xylene-induced ear oedema in mice treated with 30 μg extract were 47.2%, 63.4%, and 78.8%, while inhibition in mice ear oedema treated with 60 μg extract was 34.7%, 43.05%, 63.21% and reduction in ear thickness of standard drug were 57.3%, 59.54%, 60.42% recorded at the duration of 1, 4 and 24 hours of inflammation. Molecular docking and simulations were performed to validate the anti-inflammatory role of the phytochemicals that revealed five potential phytochemicals i.e. Stigmasterol,22,23dihydro, Heptadecane,8methyl, Pimaricacid, Germacrene and 1,3Cyclohexadiene,_5(1,5dimethyl4hexenyl)-2methyl which revealed potential inhibitory effects on cyclooxygenase-2 (COX-2), tumour necrosis factor (TNF-α), and interleukin (IL-6) in the docking analysis. Conclusion:: The outcome of the study signifies that MEDR can offer a new prospect in the discovery of a harmonizing and alternative therapy for inflammatory disease conditions.