Published in

American Association for Cancer Research, Clinical Cancer Research, 2(29), p. 316-323, 2022

DOI: 10.1158/1078-0432.ccr-22-0390

Links

Tools

Export citation

Search in Google Scholar

Facts and Hopes on the Use of Artificial Intelligence for Predictive Immunotherapy Biomarkers in Cancer

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Abstract Immunotherapy by immune checkpoint inhibitors has become a standard treatment strategy for many types of solid tumors. However, the majority of patients with cancer will not respond, and predicting response to this therapy is still a challenge. Artificial intelligence (AI) methods can extract meaningful information from complex data, such as image data. In clinical routine, radiology or histopathology images are ubiquitously available. AI has been used to predict the response to immunotherapy from radiology or histopathology images, either directly or indirectly via surrogate markers. While none of these methods are currently used in clinical routine, academic and commercial developments are pointing toward potential clinical adoption in the near future. Here, we summarize the state of the art in AI-based image biomarkers for immunotherapy response based on radiology and histopathology images. We point out limitations, caveats, and pitfalls, including biases, generalizability, and explainability, which are relevant for researchers and health care providers alike, and outline key clinical use cases of this new class of predictive biomarkers.