Published in

Public Library of Science, PLoS ONE, 6(16), p. e0252678, 2021

DOI: 10.1371/journal.pone.0252678

Links

Tools

Export citation

Search in Google Scholar

Value of spectral detector computed tomography for the early assessment of technique efficacy after microwave ablation of hepatocellular carcinoma

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Objectives To investigate whether virtual monoenergetic images (VMI) and iodine maps derived from spectral detector computed tomography (SDCT) improve early assessment of technique efficacy in patients who underwent microwave ablation (MWA) for hepatocellular carcinoma (HCC) in liver cirrhosis. Methods This retrospective study comprised 39 patients with 49 HCC lesions treated with MWA. Biphasic SDCT was performed 7.7±4.0 days after ablation. Conventional images (CI), VMI and IM were reconstructed. Signal- and contrast-to-noise ratio (SNR, CNR) in the ablation zone (AZ), hyperemic rim (HR) and liver parenchyma were calculated using regions-of-interest analysis and compared between CI and VMI between 40–100 keV. Iodine concentration and perfusion ratio of HR and residual tumor (RT) were measured. Two readers evaluated subjective contrast of AZ and HR, technique efficacy (complete vs. incomplete ablation) and diagnostic confidence at determining technique efficacy. Results Attenuation of liver parenchyma, HR and RT, SNR of liver parenchyma and HR, CNR of AZ and HR were significantly higher in low-keV VMI compared to CI (all p<0.05). Iodine concentration and perfusion ratio differed significantly between HR and RT (all p<0.05; e.g. iodine concentration, 1.6±0.5 vs. 2.7±1.3 mg/ml). VMI50keV improved subjective AZ-to-liver contrast, HR-to-liver contrast, visualization of AZ margin and vessels adjacent to AZ compared to CI (all p<0.05). Diagnostic accuracy for detection of incomplete ablation was slightly higher in VMI50keV compared to CI (0.92 vs. 0.89), while diagnostic confidence was significantly higher in VMI50keV (p<0.05). Conclusions Spectral detector computed tomography derived low-keV virtual monoenergetic images and iodine maps provide superior early assessment of technique efficacy of MWA in HCC compared to CI.