Published in

American Association for the Advancement of Science, Science Advances, 14(9), 2023

DOI: 10.1126/sciadv.ade1474

Links

Tools

Export citation

Search in Google Scholar

APOE ε4 associates with microglial activation independently of Aβ plaques and tau tangles

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Animal studies suggest that the apolipoprotein E ε4 ( APOE ε4) allele is a culprit of early microglial activation in Alzheimer’s disease (AD). Here, we tested the association between APOE ε4 status and microglial activation in living individuals across the aging and AD spectrum. We studied 118 individuals with positron emission tomography for amyloid-β (Aβ; [ 18 F]AZD4694), tau ([ 18 F]MK6240), and microglial activation ([ 11 C]PBR28). We found that APOE ε4 carriers presented increased microglial activation relative to noncarriers in early Braak stage regions within the medial temporal cortex accounting for Aβ and tau deposition. Furthermore, microglial activation mediated the Aβ-independent effects of APOE ε4 on tau accumulation, which was further associated with neurodegeneration and clinical impairment. The physiological distribution of APOE mRNA expression predicted the patterns of APOE ε4-related microglial activation in our population, suggesting that APOE gene expression may regulate the local vulnerability to neuroinflammation. Our results support that the APOE ε4 genotype exerts Aβ-independent effects on AD pathogenesis by activating microglia in brain regions associated with early tau deposition.