Published in

Wiley, physica status solidi (b) – basic solid state physics, 3(259), 2021

DOI: 10.1002/pssb.202100514

Links

Tools

Export citation

Search in Google Scholar

A Poisson–Nernst–Planck Model of Ion Transport and Interface Segregation in Metal–Insulator–Semiconductor Structures and Solar Cells

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

A numerical model that describes the transport of mobile ionic species in metal–insulator–semiconductor (MIS) and photovoltaic (PV) devices subject to temperature and voltage stress is presented. The finite element method (FEM) is used to solve the Nernst–Planck equation while imposing Poisson's equation self‐consistently as a restriction for the electrostatic potential. This allows the contribution of the ionic species to the potential to be taken into account. Using a variational formulation eases the implementation of diverse boundary conditions, including the incorporation of segregation kinetics at the device interfaces. Segregation across the dielectric–semiconductor interface is relevant to modeling the electronic device degradation in systems where contamination reaches the semiconductor. The model in closed systems with no‐flux boundary conditions is validated first. In the limiting case of low contamination levels with respect to the gate bias, the FEM solution matches analytically derived approximations. Then, the implementation is broadened to include an open boundary at the dielectric–semiconductor interface to account for leakage of ions. The predicted time dependence of the flatband voltage in Na‐contaminated MIS test structures agrees well with measurements. The model successfully captures the role of long‐range ion transport at concentrations of relevance to electronic and PV device instability and neuromorphic computing.