Published in

Springer, Biogeochemistry, 3(155), p. 305-321, 2021

DOI: 10.1007/s10533-021-00827-2

Links

Tools

Export citation

Search in Google Scholar

Drivers of soil respiration in response to nitrogen addition in a Mediterranean mountain forest

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

AbstractAtmospheric nitrogen (N) deposition rates affect soil N dynamics, influencing soil respiration (RS) rates. However, for the Mediterranean region, the effect of changes in atmospheric N deposition on RS are not well constrained yet. We investigated the interplay between increased N deposition and tree species composition on RS at a Scots pine—Pyrenean oak ecotone in Central Spain, and whether the observed responses were mediated by changes on selected soil properties. Throughout 3 years, we simulated two N deposition rates—10 (medium) and 40 kg N ha−1 a−1 (high)—over the background deposition (control) in neighbouring stands in which tree species composition (pine or oak) shapes soil stoichiometry and microbial communities. We monitored RS on a monthly basis during 3 years; in addition, we performed targeted measurements 24 h after the N fertilization events to assess short-term soil responses. During winter and summer, RS did not respond to enhanced N deposition rates. In spring and autumn, higher RS rates were observed in the medium-fertilization, but the size and duration of this effect was tree species dependent. We suggest that climate seasonality modulates the response of RS to N availability, with tree species effects becoming relevant only when environmental conditions are adequate. RS in fertilized plots was larger from February to May and in September under pine, while under oak a response was observed only in April, probably due to differences in native soil stoichiometry under each tree species. Overall, RS showed high stability during 3 years of N enrichment in this Mediterranean ecotone area. However, we observed short-term soil responses after N fertilization events—loss of base cations, soil acidification and reduced microbial biomass—which emphasize the need to investigate consequences for the belowground C and N cycles if chronic N enrichment persists in the long run.