Published in

Nature Research, Nature Communications, 1(12), 2021

DOI: 10.1038/s41467-021-21750-y

Links

Tools

Export citation

Search in Google Scholar

Isolated copper–tin atomic interfaces tuning electrocatalytic CO2 conversion

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

AbstractDirect experimental observations of the interface structure can provide vital insights into heterogeneous catalysis. Examples of interface design based on single atom and surface science are, however, extremely rare. Here, we report Cu–Sn single-atom surface alloys, where isolated Sn sites with high surface densities (up to 8%) are anchored on the Cu host, for efficient electrocatalytic CO2 reduction. The unique geometric and electronic structure of the Cu–Sn surface alloys (Cu97Sn3 and Cu99Sn1) enables distinct catalytic selectivity from pure Cu100 and Cu70Sn30 bulk alloy. The Cu97Sn3 catalyst achieves a CO Faradaic efficiency of 98% at a tiny overpotential of 30 mV in an alkaline flow cell, where a high CO current density of 100 mA cm−2 is obtained at an overpotential of 340 mV. Density functional theory simulation reveals that it is not only the elemental composition that dictates the electrocatalytic reactivity of Cu–Sn alloys; the local coordination environment of atomically dispersed, isolated Cu–Sn bonding plays the most critical role.