Published in

Wiley, Angewandte Chemie International Edition, 40(60), p. 21911-21917, 2021

DOI: 10.1002/anie.202107790

Wiley, Angewandte Chemie, 40(133), p. 22082-22088, 2021

DOI: 10.1002/ange.202107790

Links

Tools

Export citation

Search in Google Scholar

Intrinsic ORR Activity Enhancement of Pt Atomic Sites by Engineering the d‐Band Center via Local Coordination Tuning

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

AbstractA considerable amount of platinum (Pt) is required to ensure an adequate rate for the oxygen reduction reaction (ORR) in fuel cells and metal‐air batteries. Thus, the implementation of atomic Pt catalysts holds promise for minimizing the Pt content. In this contribution, atomic Pt sites with nitrogen (N) and phosphorus (P) co‐coordination on a carbon matrix (PtNPC) are conceptually predicted and experimentally developed to alter the d‐band center of Pt, thereby promoting the intrinsic ORR activity. PtNPC with a record‐low Pt content (≈0.026 wt %) consequently shows a benchmark‐comparable activity for ORR with an onset of 1.0 VRHE and half‐wave potential of 0.85 VRHE. It also features a high stability in 15 000‐cycle tests and a superior turnover frequency of 6.80 s−1 at 0.9 VRHE. Damjanovic kinetics analysis reveals a tuned ORR kinetics of PtNPC from a mixed 2/4‐electron to a predominately 4‐electron route. It is discovered that coordinated P species significantly shifts d‐band center of Pt atoms, accounting for the exceptional performance of PtNPC.