Published in

Wiley, British Journal of Pharmacology, 16(179), p. 4117-4135, 2022

DOI: 10.1111/bph.15849

Links

Tools

Export citation

Search in Google Scholar

Cardioprotective actions of nitroxyl donor Angeli's salt are preserved in the diabetic heart and vasculature in the face of nitric oxide resistance

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Background and PurposeThe risk of fatal cardiovascular events is increased in patients with type 2 diabetes mellitus (T2DM). A major contributor to poor prognosis is impaired nitric oxide (NO•) signalling at the level of tissue responsiveness, termed NO• resistance. This study aimed to determine if T2DM promotes NO• resistance in the heart and vasculature and whether tissue responsiveness to nitroxyl (HNO) is affected.Experimental ApproachAt 8 weeks of age, male Sprague–Dawley rats commenced a high‐fat diet. After 2 weeks, the rats received low‐dose streptozotocin (two intraperitoneal injections, 35 mg·kg−1, over two consecutive days) and continued on the same diet. Twelve weeks later, isolated hearts were Langendorff‐perfused to assess responses to the NO• donor diethylamine NONOate (DEA/NO) and the HNO donor Angeli's salt. Isolated mesenteric arteries were utilised to measure vascular responsiveness to the NO• donors sodium nitroprusside (SNP) and DEA/NO, and the HNO donor Angeli's salt.Key ResultsInotropic, lusitropic and coronary vasodilator responses to DEA/NO were impaired in T2DM hearts, whereas responses to Angeli's salt were preserved or enhanced. Vasorelaxation to Angeli's salt was augmented in T2DM mesenteric arteries, which were hyporesponsive to the relaxant effects of SNP and DEA/NO.Conclusion and ImplicationsThis is the first evidence that inotropic and lusitropic responses are preserved, and NO• resistance in the coronary and mesenteric vasculature is circumvented, by the HNO donor Angeli's salt in T2DM. These findings highlight the cardiovascular therapeutic potential of HNO donors, especially in emergencies such as acute ischaemia or heart failure.