Published in

American Geophysical Union, Journal of Geophysical Research: Atmospheres, 10(127), 2022

DOI: 10.1029/2021jd036249

Links

Tools

Export citation

Search in Google Scholar

Contrasting Stratospheric Smoke Mass and Lifetime From 2017 Canadian and 2019/2020 Australian Megafires: Global Simulations and Satellite Observations

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

AbstractStratospheric injections of carbonaceous aerosols and combustion gases by extreme wildfires have become increasingly common. Recent “megafires,” particularly large and intense fires, delivered particulate burdens to the lower stratosphere comparable to those of moderate volcanic eruptions. The 2017 Canadian megafire generated four large Pyrocumulonimbi (pyroCbs), injecting up to ≈0.3 Tg of smoke in the lower stratosphere. Even more extreme, the 2019/2020 Australian event produced a pyroCb activity resulting in stratospheric smoke intrusions of ≈1 Tg. To understand their contrasting behavior, we present global climate simulations of the atmospheric response to these events, applying smoke burdens informed by remote observations. Model outcomes, compared to satellite data of smoke transport, reproduce reasonably well the initial plume rise, at 0.2–0.3 km/day, attaining heights of ≈20 km in Canada and above 30 km in Australia. Global dispersal of the plume occurs within about 3 weeks in both cases, consistent with observations. Smoke removal timescales, ≈5 months for the Canadian megafire, agree with remote measurements. During the Australian megafire, observations indicate stratospheric injections three times as large, and models predict comparatively longer smoke lifetimes, ≈16 months. After the latter event, atmospheric optical depths and radiative cooling achieved values close to those measured following the Pinatubo eruption. Sensitivity tests of model assumptions indicate, in accord with prior studies, that smoke burden, injection heights, and black carbon content can determine plume evolution and possible climate impacts. An empirical relation between peak heights of stratospheric plumes and lifetimes is derived that can help assess megafire impacts on the stratosphere, climate and the Earth system.