Published in

American Astronomical Society, Astrophysical Journal Letters, 1(928), p. L7, 2022

DOI: 10.3847/2041-8213/ac5b6f

Links

Tools

Export citation

Search in Google Scholar

Analysis of a JWST NIRSpec Lab Time Series: Characterizing Systematics, Recovering Exoplanet Transit Spectroscopy, and Constraining a Noise Floor

Journal article published in 2022 by Zafar Rustamkulov ORCID, David K. Sing ORCID, Rongrong Liu ORCID, Ashley Wang ORCID
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Red circle
Preprint: archiving forbidden
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Abstract The James Webb Space Telescope’s (JWST) NIRSpec instrument will unveil the nature of exoplanet atmospheres across the wealth of planet types, from temperate terrestrial worlds to ultrahot Jupiters. In particular, the 0.6–5.3 μm PRISM mode is especially well suited for efficient spectroscopic exoplanet observations spanning a number of important spectral features. We analyze a lab-measured NIRSpec PRISM mode Bright Object Time Series observation from the perspective of a JWST user to understand the instrument performance and detector properties. We create two realistic transiting exoplanet time-series observations by performing injection-recovery tests on the lab-measured data to quantify the effects of real instrument jitter, drift, intrapixel sensitivity variations, and 1/f noise on measured transmission spectra. By fitting the time-series systematics simultaneously with the injected transit, we can obtain more realistic transit-depth uncertainties that take into account noise sources that are currently not modeled by traditional exposure time calculators. We find that sources of systematic noise related to intrapixel sensitivity variations and point-spread function motions are apparent in the data at the level of a few hundred ppm but can be effectively detrended using a low-order polynomial with detector position. We recover the injected spectral features of GJ 436 b and TRAPPIST-1 d and place a 3σ upper limit on the detector noise floor of 14 ppm. We find that the noise floor is consistent with <10 ppm at the 1.7σ level, which bodes well for future observations of challenging targets with faint atmospheric signatures.