Published in

MDPI, Biology, 10(11), p. 1398, 2022

DOI: 10.3390/biology11101398

Links

Tools

Export citation

Search in Google Scholar

The Interaction Effect of Laser Irradiation and 6-Benzylaminopurine Improves the Chemical Composition and Biological Activities of Linseed (Linum usitatissimum) Sprouts

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Even though laser light (LL) and 6-benzylaminopurine (BAP) priming are well-known as promising strategies for increasing the growth and nutritional value of several plants, no previous studies have investigated their synergistic effect. Herein, we investigated the effects of laser light, 6-benzylaminopurine (BAP) priming, and combined LL-BAP treatment on the nutritional value, chemical composition, and the biological activity of Linum usitatissimum sprouts. The fresh weight, leaf pigments, primary and secondary metabolites, enzymes, and antimicrobial activities were determined. A substantial enhancement was observed in the growth characteristics and leaf pigments of laser-irradiated and BAP-primed sprouts. Furthermore, the combined treatments improved the accumulation of minerals, vitamins, and amino acids, and also enhanced the N-metabolism more than LL or BAP alone. Furthermore, the combined priming boosted the antioxidant capacity by increasing the contents of fatty acids, phenols, and flavonoids. Antimicrobial activity and the highest increase in bioactive compounds were recorded in linseed sprouts simultaneously treated with LL and BAP. This work suggests that priming L. usitatissimum sprouts with laser light and BAP is a promising approach that can improve the nutritional value and health-promoting impacts of L. usitatissimum sprouts.