Published in

American Astronomical Society, Astrophysical Journal, 2(931), p. 139, 2022

DOI: 10.3847/1538-4357/ac6a55

Links

Tools

Export citation

Search in Google Scholar

Improving Cosmological Constraints from Galaxy Cluster Number Counts with CMB-cluster-lensing Data: Results from the SPT-SZ Survey and Forecasts for the Future

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Red circle
Preprint: archiving forbidden
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Abstract We show the improvement to cosmological constraints from galaxy cluster surveys with the addition of cosmic microwave background (CMB)-cluster lensing data. We explore the cosmological implications of adding mass information from the 3.1σ detection of gravitational lensing of the CMB by galaxy clusters to the Sunyaev–Zel’dovich (SZ) selected galaxy cluster sample from the 2500 deg2 SPT-SZ survey and targeted optical and X-ray follow-up data. In the ΛCDM model, the combination of the cluster sample with the Planck power spectrum measurements prefers σ 8 Ω m / 0.3 0.5 = 0.831 ± 0.020 . Adding the cluster data reduces the uncertainty on this quantity by a factor of 1.4, which is unchanged whether the 3.1σ CMB-cluster lensing measurement is included or not. We then forecast the impact of CMB-cluster lensing measurements with future cluster catalogs. Adding CMB-cluster lensing measurements to the SZ cluster catalog of the ongoing SPT-3G survey is expected to improve the expected constraint on the dark energy equation of state w by a factor of 1.3 to σ(w) = 0.19. We find the largest improvements from CMB-cluster lensing measurements to be for σ 8, where adding CMB-cluster lensing data to the cluster number counts reduces the expected uncertainty on σ 8 by respective factors of 2.4 and 3.6 for SPT-3G and CMB-S4.