Published in

American Geophysical Union, Geophysical Research Letters, 8(48), 2021

DOI: 10.1029/2020gl091351

Links

Tools

Export citation

Search in Google Scholar

Uptake of Water‐soluble Gas‐phase Oxidation Products Drives Organic Particulate Pollution in Beijing

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

AbstractDespite the recent decrease in pollution events in Chinese urban areas, the World Health Organization air quality guideline values are still exceeded. Observations from monitoring networks show a stronger decrease of organic aerosol directly emitted to the atmosphere relative to secondary organic aerosol (SOA) generated from oxidation processes. Here, the uptake of water‐soluble gas‐phase oxidation products is reported as a major SOA contribution to particulate pollution in Beijing, triggered by the increase of aerosol liquid water. In pollution episodes, this pathway is enough to explain the increase in SOA mass, with formaldehyde, acetaldehyde, glycolaldehyde, formic acid, and acetic acid alone explaining 15%–25% of the SOA increase. Future mitigation strategies to reduce non‐methane volatile organic compound emissions should be considered to reduce organic particulate pollution in China.