Published in

Oxford University Press, Monthly Notices of the Royal Astronomical Society, 4(526), p. 5800-5823, 2023

DOI: 10.1093/mnras/stad2663

Links

Tools

Export citation

Search in Google Scholar

An HST COS ultraviolet spectroscopic survey of 311 DA white dwarfs – I. Fundamental parameters and comparative studies

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

ABSTRACT White dwarf studies carry significant implications across multiple fields of astrophysics, including exoplanets, supernova explosions, and cosmological investigations. Thus, accurate determinations of their fundamental parameters (Teff and log g) are of utmost importance. While optical surveys have provided measurements for many white dwarfs, there is a lack of studies utilizing ultraviolet (UV) data, particularly focusing on the warmer ones that predominantly emit in the UV range. Here, we present the medium-resolution far-UV spectroscopic survey of 311 DA white dwarfs obtained with Cosmic Origins Spectrograph (COS) onboard Hubble Space Telescope confirming 49 photometric Gaia candidates. We used 3D extinction maps, parallaxes, and hydrogen atmosphere models to fit the spectra of the stars that lie in the range $12\, 000 \lt \mbox{$T_{\mathrm{eff}}$}\lt 33\, 000$ K, and $7 \le \mbox{$\log g$}\lt 9.2$. To assess the impact of input physics, we employed two mass–radius relations in the fitting and compared the results with previous studies. The comparisons suggest the COS Teff are systematically lower by 3 per cent, on average, than Balmer line fits while they differ by only 1.5 per cent from optical photometric studies. The mass distributions indicate that the COS masses are smaller by ≈0.05 and 0.02 M⊙ than Balmer lines and photometric masses, respectively. Performing several tests, we find that the discrepancies are either arising due to issues with the COS calibration, broadening theories for hydrogen lines, or interstellar reddening which needs further examination. Based on comparative analysis, we identify 30 binary candidates drawing attention for follow-up studies to confirm their nature.