Published in

CSIRO Publishing, International Journal of Wildland Fire, 5(32), p. 665-678, 2023

DOI: 10.1071/wf22022

Links

Tools

Export citation

Search in Google Scholar

Quantifying burned area of wildfires in the western United States from polar-orbiting and geostationary satellite active-fire detections

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Background Accurately estimating burned area from satellites is key to improving biomass burning emission models, studying fire evolution and assessing environmental impacts. Previous studies have found that current methods for estimating burned area of fires from satellite active-fire data do not always provide an accurate estimate. Aims and methods In this work, we develop a novel algorithm to estimate hourly accumulated burned area based on the area from boundaries of non-convex polygons containing the accumulated Visible Infrared Imaging Radiometer Suite (VIIRS) active-fire detections. Hourly time series are created by combining VIIRS estimates with Fire Radiative Power (FRP) estimates from GOES-17 (Geostationary Operational Environmental Satellite) data. Conclusions, key results and implication We evaluate the performance of the algorithm for both accumulated and change in burned area between airborne observations, and specifically examine sensitivity to the choice of the parameter controlling how much the boundary can shrink towards the interior of the area polygon. Results of the hourly accumulation of burned area for multiple fires from 2019 to 2020 generally correlate strongly with airborne infrared (IR) observations collected by the United States Forest Service National Infrared Operations (NIROPS), exhibiting correlation coefficient values usually greater than 0.95 and errors <20%.