Published in

Nature Research, npj Climate and Atmospheric Science, 1(4), 2021

DOI: 10.1038/s41612-021-00192-9

Links

Tools

Export citation

Search in Google Scholar

Australia’s Black Summer pyrocumulonimbus super outbreak reveals potential for increasingly extreme stratospheric smoke events

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

AbstractThe Black Summer fire season of 2019–2020 in southeastern Australia contributed to an intense ‘super outbreak’ of fire-induced and smoke-infused thunderstorms, known as pyrocumulonimbus (pyroCb). More than half of the 38 observed pyroCbs injected smoke particles directly into the stratosphere, producing two of the three largest smoke plumes observed at such altitudes to date. Over the course of 3 months, these plumes encircled a large swath of the Southern Hemisphere while continuing to rise, in a manner consistent with existing nuclear winter theory. We connect cause and effect of this event by quantifying the fire characteristics, fuel consumption, and meteorology contributing to the pyroCb spatiotemporal evolution. Emphasis is placed on the unusually long duration of sustained pyroCb activity and anomalous persistence during nighttime hours. The ensuing stratospheric smoke plumes are compared with plumes injected by significant volcanic eruptions over the last decade. As the second record-setting stratospheric pyroCb event in the last 4 years, the Australian super outbreak offers new clues on the potential scale and intensity of this increasingly extreme fire-weather phenomenon in a warming climate.