Published in

EMBO Press, The EMBO Journal, 19(42), 2023

DOI: 10.15252/embj.2022113118

Links

Tools

Export citation

Search in Google Scholar

ER stress induces caspase‐2‐tBID‐GSDME‐dependent cell death in neurons lytically infected with herpes simplex virus type 2

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

AbstractNeurotropic viruses, including herpes simplex virus (HSV) types 1 and 2, have the capacity to infect neurons and can cause severe diseases. This is associated with neuronal cell death, which may contribute to morbidity or even mortality if the infection is not controlled. However, the mechanistic details of HSV‐induced neuronal cell death remain enigmatic. Here, we report that lytic HSV‐2 infection of human neuron‐like SH‐SY5Y cells and primary human and murine brain cells leads to cell death mediated by gasdermin E (GSDME). HSV‐2‐induced GSDME‐mediated cell death occurs downstream of replication‐induced endoplasmic reticulum stress driven by inositol‐requiring kinase 1α (IRE1α), leading to activation of caspase‐2, cleavage of the pro‐apoptotic protein BH3‐interacting domain death agonist (BID), and mitochondria‐dependent activation of caspase‐3. Finally, necrotic neurons released alarmins, which activated inflammatory responses in human iPSC‐derived microglia. In conclusion, lytic HSV infection in neurons activates an ER stress‐driven pathway to execute GSDME‐mediated cell death and promote inflammation.