Published in

Oxford University Press, Monthly Notices of the Royal Astronomical Society, 1(508), p. 882-894, 2021

DOI: 10.1093/mnras/stab2202

Links

Tools

Export citation

Search in Google Scholar

Constraining the properties of dense neutron star cores: the case of the low-mass X-ray binary HETE J1900.1–2455

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

ABSTRACT Measuring the time evolution of the effective surface temperature of neutron stars can provide invaluable information on the properties of their dense cores. Here, we report on a new Chandra observation of the transient neutron star low-mass X-ray binary HETE J1900.1–2455, which was obtained ≈2.5 yr after the end of its ≈10-yr long accretion outburst. The source is barely detected during the observation, collecting only six net photons, all below 2 keV. Assuming that the spectrum is shaped as a neutron star atmosphere model, we perform a statistical analysis to determine a 1σ confidence upper range for the neutron star temperature of ≈30–39 eV (for an observer at infinity), depending on its mass, radius, and distance. Given the heat injected into the neutron star during the accretion outburst, estimated from data provided by all-sky monitors, the inferred very low temperature suggests that the core either has a very high heat capacity or undergoes very rapid neutrino cooling. While the present data do not allow us to disentangle these two possibilities, both suggest that a significant fraction of the dense core is not superfluid/superconductor. Our modelling of the thermal evolution of the neutron star predicts that it may still cool further, down to a temperature of ≃15 eV. Measuring such a low temperature with a future observation may provide constraints on the fraction of baryons that is paired in the stellar core.