Published in

Oxford University Press, Monthly Notices of the Royal Astronomical Society, 2(507), p. 2174-2191, 2021

DOI: 10.1093/mnras/stab2167

Links

Tools

Export citation

Search in Google Scholar

Optical photometry of two transitional millisecond pulsars in the radio pulsar state

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

ABSTRACT We present ULTRACAM multiband optical photometry of two transitional millisecond pulsars (tMSPs), PSR J1023+0038 and PSR J1227−4853, taken while both were in their radio pulsar states. The light curves show significant asymmetry about the flux maxima in all observed bands, suggesting an asymmetric source of heating in the system. We model the light curves using the icarus binary code, using models with an additional ‘hotspot’ heating contribution and an anisotropic heat redistribution model to treat the asymmetry. Our modelling reveals companion stars with underfilled Roche lobes in both PSRs J1023+0038 and J1227−4853, with Roche lobe filling factors in the range f ∼ 0.82−0.92. While the volume-averaged filling factors are closer to unity, significant underfilling is unexpected from tMSPs as they must rapidly overfill their Roche lobes to start transferring mass, which occurs on time-scale of weeks or months. We discuss the motivation and validity of our extensions to the models and the implications of the underfilled Roche lobe, and suggest future work to further investigate the role of the filling factor in the tMSP cycle.