Published in

Wiley Open Access, Microbiology Open, 2(10), 2021

DOI: 10.1002/mbo3.1178

Links

Tools

Export citation

Search in Google Scholar

Staphylococcus aureusST228 and ST239 as models for expression studies of diverse markers during osteoblast infection and persistence

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

AbstractThe ability ofS. aureusto infect bone and osteoblasts is correlated with its incredible virulencearmamentariumthat can mediate the invasion/internalization process, cytotoxicity, membrane damage, and intracellular persistence. We comparatively analyzed the interaction, persistence, and modulation of expression of selected genes and cell viability in an ex vivo model using human MG‐63 osteoblasts of two previously studied and well‐characterizedS. aureusclinical strains belonging to the ST239‐SCCmecIII‐t037 and ST228‐SCCmecI‐t041 clones at 3 h and 24 h post‐infection (p.i).S. aureusATCC12598 ST30‐t076 was used as a control strain. Using imaging flow cytometry (IFC), we found that these strains invaded and persisted in MG‐63 osteoblasts to different extents. The invasion was evaluated at 3 h p.i and persistence at 24 h p.i., in particular: ATCC12598 internalized in 70% and persisted in 50% of MG‐63 cells; ST239‐SCCmecIII internalized in 50% and persisted in 45% of MG‐63 cells; and ST228‐SCCmecI internalized in 30% and persisted in 20% of MG‐63 cells. During the infection period, ST239‐III exerted significant cytotoxic activity resulting from overexpression ofhlaandpsmA and increased expression of the genes involved in adhesion, probably due to the release and re‐entry of bacteria inside MG‐63 cells at 24 h p.i. The lower invasiveness of ST228‐I was also associated with non‐cytotoxic activity inside osteoblasts. This clone was unable to activate sufficient cellular reaction and succumbed inside MG‐63 cells. Our findings support the idea of considering new strategies, based on a translational approach—eukaryotic host–pathogen interaction (EHPI)—and to be applied on a large scale, to predictS. aureus/osteoblast interaction and treat bone infections. Such strategies rely on the study of the genetic and biochemical basis of both pathogen and host.