Published in

Nature Research, Scientific Reports, 1(13), 2023

DOI: 10.1038/s41598-023-30633-9

Links

Tools

Export citation

Search in Google Scholar

Plasma bioactive adrenomedullin predicts outcome after acute stroke in early rehabilitation

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

AbstractAn early and reliable prediction of outcomes after stroke is important for early effective stroke management and the adequate optimal planning of post-stroke rehabilitation and long-term care. Bioactive adrenomedullin (bio-ADM) is a 52-amino acid peptide that is an important peptide hormone in nervous system diseases. The aim of this study was to investigate the prognostic value of bio-ADM on outcomes after rehabilitation in patients with stroke. A total of 557 consecutive patients with a primary diagnosis of ischemic or hemorrhagic stroke (age 69.6–12.9 years, male 51.3%, ischemic stroke 72.5%), who were admitted to an in-patient early rehabilitation center directly after discharge from acute stroke hospital care, were enrolled in this prospective observational study. Plasma concentrations of bio-ADM were determined by using a chemiluminescence immunoassay (functional assay sensitivity 8 pg/ml). The early rehabilitation barthel index (ERBI) was used for the neurological assessment of the patients. The plasma bio-ADM level was analyzed in association with 6-month all-cause mortality as well as a composite outcome of all-cause mortality, unscheduled re-hospitalization, or transfer to a long-term care facility in a vegetative or minimally conscious state. Bio-ADM levels significantly increased in patients with ischemic stroke who died compared to surviving patients (40.4 pg/ml vs. 23.8 pg/ml, p < 0.001) or in those with composite outcomes compared to those with no events (36.9 pg/ml vs. 23.5 pg/ml, p < 0.001). Six-month all-cause mortality was higher in all patients with bio-ADM levels > 70 pg/ml (HR 4.83 [CI 2.28–10.2]). Patients with bio-ADM levels > 70 pg/ml also had higher rates of 6-month composite outcomes (HR 3.82 [CI 2.08–7.01]). Bio-ADM was an independent predictor of all-cause mortality and 6-month composite outcomes after adjusting for age, gender, and ERBI (adjusted OR 1.5; 95% CI 1.0–2.1; p = 0.047 and adjusted OR 1.48; 95% CI 1.1–2.0; p = 0.01, respectively). Bio-ADM may be a suitable novel biomarker to assess the outcomes of patients in rehabilitation after acute stroke. Elevated bio-ADM concentrations may have prognostic value for fatal and nonfatal events in patients with ischemic stroke during early rehabilitation.