Published in

arXiv, 2022

DOI: 10.48550/arxiv.2208.08450

Oxford University Press, Monthly Notices of the Royal Astronomical Society, 4(516), p. 5052-5066, 2022

DOI: 10.1093/mnras/stac2391

Links

Tools

Export citation

Search in Google Scholar

Long-term photometric monitoring and spectroscopy of the white dwarf pulsar AR Scorpii

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Question mark in circle
Preprint: policy unknown
Question mark in circle
Postprint: policy unknown
Question mark in circle
Published version: policy unknown

Abstract

ABSTRACT AR Scorpii (AR Sco) is the only radio-pulsing white dwarf known to date. It shows a broad-band spectrum extending from radio to X-rays whose luminosity cannot be explained by thermal emission from the system components alone, and is instead explained through synchrotron emission powered by the spin-down of the white dwarf. We analysed NTT/ULTRACAM, TNT/ULTRASPEC, and GTC/HiPERCAM high-speed photometric data for AR Sco spanning almost seven years and obtained a precise estimate of the spin frequency derivative, now confirmed with 50-σ significance. Using archival photometry, we show that the spin-down rate of $P/\dot{P} = 5.6 \times 10^6$ yr has remained constant since 2005. As well as employing the method of pulse-arrival time fitting used for previous estimates, we also found a consistent value via traditional Fourier analysis for the first time. In addition, we obtained optical time-resolved spectra with WHT/ISIS and VLT/X-shooter. We performed modulated Doppler tomography for the first time for the system finding evidence of emission modulated on the orbital period. We have also estimated the projected rotational velocity of the M-dwarf as a function of orbital period and found that it must be close to Roche lobe filling. Our findings provide further constraints for modelling this unique system.