Published in

EDP Sciences, Astronomy & Astrophysics, (677), p. A38, 2023

DOI: 10.1051/0004-6361/202346838

Links

Tools

Export citation

Search in Google Scholar

TOI-2084 b and TOI-4184 b: Two new sub-Neptunes around M dwarf stars

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Red circle
Preprint: archiving forbidden
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

We present the discovery and validation of two TESS exoplanets orbiting nearby M dwarfs: TOI-2084 b, and TOI-4184b. We characterized the host stars by combining spectra from Shane/Kast and Magellan/FIRE, spectral energy distribution analysis, and stellar evolutionary models. In addition, we used Gemini-South/Zorro & -North/Alopeke high-resolution imaging, archival science images, and statistical validation packages to support the planetary interpretation. We performed a global analysis of multi-colour photometric data from TESS and ground-based facilities in order to derive the stellar and planetary physical parameters for each system. We find that TOI-2084 band TOI-4184 bare sub-Neptune-sized planets with radii of Rp = 2.47 ± 0.13R and Rp = 2.43 ± 0.21 R, respectively. TOI-2084 b completes an orbit around its host star every 6.08 days, has an equilibrium temperature of Teq = 527 ± 8 K and an irradiation of Sp = 12.8 ± 0.8 S. Its host star is a dwarf of spectral M2.0 ± 0.5 at a distance of 114 pc with an effective temperature of Teff = 3550 ± 50 K, and has a wide, co-moving M8 companion at a projected separation of 1400 au. TOI-4184 b orbits around an M5.0 ± 0.5 type dwarf star (Kmag = 11.87) each 4.9 days, and has an equilibrium temperature of Teq = 412 ± 8 K and an irradiation of Sp = 4.8 ± 0.4 S. TOI-4184 is a metal poor star ([Fe/H] = −0.27 ± 0.09 dex) at a distance of 69 pc with an effective temperature of Teff = 3225 ± 75 K. Both planets are located at the edge of the sub-Jovian desert in the radius-period plane. The combination of the small size and the large infrared brightness of their host stars make these new planets promising targets for future atmospheric exploration with JWST.