Published in

Nature Research, Nature Communications, 1(13), 2022

DOI: 10.1038/s41467-022-31651-3

Links

Tools

Export citation

Search in Google Scholar

Low-dimensional assemblies of metal-organic framework particles and mutually coordinated anisotropy

Journal article published in 2022 by Dengping Lyu ORCID, Wei Xu, Jae Elise L. Payong ORCID, Tianran Zhang, Yufeng Wang ORCID
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

AbstractAssembling metal-organic framework (MOF)-based particles is an emerging approach for creating colloidal superstructures and hierarchical functional materials. However, realization of this goal requires strategies that not only regulate particle interactions but also harness the anisotropic morphologies and functions of various frameworks. Here, by exploiting depletion interaction induced by ionic amphiphiles, we show the assembly of a broad range of low-dimensional MOF colloidal superstructures, including 1D straight chains, alternating or bundled chains, 2D films of hexagonal, square, centered rectangular, and snowflake-like architectures, and quasi-3D supercrystals. With well-defined polyhedral shapes, the MOF particles are mutually oriented upon assembly, producing super-frameworks with hierarchically coordinated crystallinity and micropores. We demonstrate this advantage by creating functional MOF films with optical anisotropy, in our cases, birefringence and anisotropic fluorescence. Given the variety of MOFs available, our technique should allow access to advanced materials for sensing, optics, and photonics.