Published in

American Association for the Advancement of Science, Science, 6576(375), p. 71-76, 2022

DOI: 10.1126/science.abj2637

Links

Tools

Export citation

Search in Google Scholar

Metastable Dion-Jacobson 2D structure enables efficient and stable perovskite solar cells

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Directing efficient hole transport Surface defects in three-dimensional perovskites can decrease performance but can be healed with coatings based on two-dimensional (2D) perovskite such as Ruddlesden-Popper phases. However, the bulky organic groups of these 2D phases can lead to low and anisotropic charge transport. F. Zhang et al . show that a metastable polymorph of a Dion-Jacobson 2D structure based on asymmetric organic molecules reduced the energy barrier for hole transport and their transport through the layer. When used as a top layer for a triple-cation mixed-halide perovskite, a solar cell retained 90% of its initial power conversion efficiency of 24.7% after 1000 hours of operation at approximately 40°C in nitrogen. —PDS