Published in

SAGE Publications, Waste Management & Research : The Journal for a Sustainable Circular Economy, 7(40), p. 882-891, 2021

DOI: 10.1177/0734242x211061213

Links

Tools

Export citation

Search in Google Scholar

Effects of grass type on hydraulic response of the three-layer landfill cover system

Journal article published in 2021 by Song Feng ORCID, Hong Wei Liu ORCID, Qi Peng Cai, Wen Bin Jian
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Soil column tests were conducted to investigate the effects of grass type on water infiltration in a three-layer landfill cover under drying and wetting conditions. Five soil columns were prepared, including one bare, two Bermuda grass-planted and the other two vetiver-planted. During the drying period, the suction of vetiver-planted soil column was the largest, while that of bare case was the lowest. During the wetting period, the infiltration rate shows a bimodal form due to the contrasting hydraulic properties of different soil layers. The infiltration rate of vetiver-planted soil column was the lowest, followed by Bermuda grass-planted and bare cases. Correspondingly, the vetiver-planted soil column retained the maximum suction and the deepest ponding depth during rainfall. This was likely due to the larger leaf area and deeper roots of vetiver than those of Bermuda grass, thus inducing the maximum initial suction by root water uptake before rainfall and reducing the water permeability by root occupations of soil pores. These results show that vetiver is more effective than Bermuda grass to reduce water percolation through the three-layer landfill cover.