Published in

American Institute of Physics, Applied Physics Letters, 4(121), p. 041901, 2022

DOI: 10.1063/5.0103650

Links

Tools

Export citation

Search in Google Scholar

An optoelectronic heterostructure for neuromorphic computing: CdS/V<sub>3</sub>O<sub>5</sub>

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

Nonvolatile resistive switching is one of the key phenomena for emerging applications in optoelectronics and neuromorphic computing. In most of the cases, an electric field is applied to a two terminal dielectric material device and leads to the formation of a low resistance filament due to ion migration. However, the stochastic nature of the ion migration can be an impediment for the device robustness and controllability, with uncontrolled variations of high and low resistance states or threshold voltages. Here, we report an optically induced resistive switching based on a CdS/V3O5 heterostructure which can overcome this issue. V3O5 is known to have a second order insulator to metal transition around Tc ≈ 415 K, with an electrically induced threshold switching at room temperature. Upon illumination, the direct transfer of the photoinduced carriers from the CdS into V3O5 produces a nonvolatile resistive switching at room temperature. The initial high resistance can be recovered by reaching the high temperature metallic phase, i.e., temperatures above Tc. Interestingly, this resistive switching becomes volatile around the Tc. By locally manipulating the volatile and nonvolatile resistive switching using electric field and light, this system is a promising platform for hardware based neuromorphic computing implementations.