Published in

MDPI, International Journal of Environmental Research and Public Health, 12(18), p. 6421, 2021

DOI: 10.3390/ijerph18126421

Links

Tools

Export citation

Search in Google Scholar

Brominated Flame Retardants in Children’s Room: Concentration, Composition, and Health Risk Assessment

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Children spend most of their daily time indoors. Many of the items used indoors, such as furniture, electronics, textile, and children toys, are treated with chemicals to provide longevity and fulfil the safety standards. However, many chemicals added to these products are released into the environment during leaching out from the treated products. Many studies have reported brominated flame retardants (BFRs) in indoor environments; however, few have focused on environments specified for young children. In this study, paired air (PM10) and dust samples were collected from the rooms (n = 30) of Saudi children. These samples were analyzed for different congeners of polybrominated diphenyl ethers (PBDEs) and three important alternative flame retardants using gas chromatography-mass spectrometry. Decabromodiphenyl ether (BDE 209) was the most important analyzed BFR in dust and PM10 samples with a median value of 3150 ng/g of dust and 75 pg/m3. This indicates the wider application of BDE 209 has implications for its occurrence, although its use has been regulated for specified uses since 2014. Among alternative BFRs, 2-Ethylhexyl-2,3,4,5-tetrabromobenzoate (TBB), Bis(2-ethylhexyl)-3,4,5,6-tetrabromophthalate (TBPH), and 1,2-Bis(2,4,6-tribromophenoxy)ethane (BTBPE) were found with a median levels of 10, 15 and 8 ng/g of dust, respectively. However, alternative BFRs were present in <50% of the PM10 samples. The calculated long term and daily exposures via indoor dust and PM10 of Saudi children from their rooms were well below the respective reference dose (RfD) values. Nonetheless, the study highlights BDE 209 at higher levels than previously reported from household dust in Saudi Arabia. The study warrants further extensive research to estimate the different classes of chemical exposure to children from their rooms.