Published in

American Association for the Advancement of Science, Science, 6614(377), p. 1519-1529, 2022

DOI: 10.1126/science.abj5104

Links

Tools

Export citation

Search in Google Scholar

Oncometabolite d -2HG alters T cell metabolism to impair CD8 <sup>+</sup> T cell function

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Gain-of-function mutations in isocitrate dehydrogenase (IDH) in human cancers result in the production of d -2-hydroxyglutarate ( d -2HG), an oncometabolite that promotes tumorigenesis through epigenetic alterations. The cancer cell–intrinsic effects of d -2HG are well understood, but its tumor cell–nonautonomous roles remain poorly explored. We compared the oncometabolite d -2HG with its enantiomer, l -2HG, and found that tumor-derived d -2HG was taken up by CD8 + T cells and altered their metabolism and antitumor functions in an acute and reversible fashion. We identified the glycolytic enzyme lactate dehydrogenase (LDH) as a molecular target of d -2HG. d -2HG and inhibition of LDH drive a metabolic program and immune CD8 + T cell signature marked by decreased cytotoxicity and impaired interferon-γ signaling that was recapitulated in clinical samples from human patients with IDH1 mutant gliomas.