Published in

American Geophysical Union, Geophysical Research Letters, 20(37), p. n/a-n/a, 2010

DOI: 10.1029/2010gl044071

Links

Tools

Export citation

Search in Google Scholar

Long-term slip history discriminates among occurrence models for seismic hazard assessment

Journal article published in 2010 by Delphine D. Fitzenz, Matthieu A. Ferry ORCID, Andre Jalobeanu
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

Today, the probabilistic seismic hazard assessment (PSHA) community relies on stochastic models to compute occurrence probabilities for large earthquakes. Considerable efforts have been devoted to extracting information from long catalogs of large earthquakes based on instrumental, historical, archeological and paleoseismological data. However, the models remain only and insufficiently constrained by these rare single-slip event data. Therefore, the selection of the models and their respective weights necessarily involves ruling by a panel of experts. Since cumulative slip data with high temporal and spatial resolution are now available, we propose a new approach to incorporate these pieces of evidence of mid- to long-term fault behavior into PSHA: the Cumulative Offset-Based Bayesian Recurrence Analysis (COBBRA). For the Dead Sea Fault, our method provides weights to the competing recurrence and rupture models, allows time-independent models to be ruled out, and provides a means to compute the cumulative probability of occurrence for the next full-segment event reflecting all available data.