Published in

American Association for the Advancement of Science, Science Advances, 3(8), 2022

DOI: 10.1126/sciadv.abj9466

Links

Tools

Export citation

Search in Google Scholar

Trade-off between sex and growth in diatoms: Molecular mechanisms and demographic implications

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Diatoms are fast-growing and winning competitors in aquatic environments, possibly due to optimized growth performance. However, their life cycles are complex, heteromorphic, and not fully understood. Here, we report on the fine control of cell growth and physiology during the sexual phase of the marine diatom Pseudo-nitzschia multistriata . We found that mating, under nutrient replete conditions, induces a prolonged growth arrest in parental cells. Transcriptomic analyses revealed down-regulation of genes related to major metabolic functions from the early phases of mating. Single-cell photophysiology also pinpointed an inhibition of photosynthesis and storage lipids accumulated in the arrested population, especially in gametes and zygotes. Numerical simulations revealed that growth arrest affects the balance between parental cells and their siblings, possibly favoring the new generation. Thus, in addition to resources availability, life cycle traits contribute to shaping the species ecological niches and must be considered to describe and understand the structure of plankton communities.