Published in

National Academy of Sciences, Proceedings of the National Academy of Sciences, 50(118), 2021

DOI: 10.1073/pnas.2112942118

Links

Tools

Export citation

Search in Google Scholar

A serum-stable RNA aptamer specific for SARS-CoV-2 neutralizes viral entry

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Red circle
Preprint: archiving forbidden
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Significance Developing molecules capable of binding to SARS-CoV-2 spike protein and inhibiting viral infection is of utmost importance for the detection and therapy of COVID-19. We have developed and engineered a serum-stable RNA aptamer specific for SARS-CoV-2 spike protein. We further show that scaffolding three aptamers together increases the binding efficiency to the low picomolar range and enables very efficient neutralization of SARS-CoV-2 infection in cells. The aptamer also shows high affinity for spike protein from variants of concern. Due to its small size and chemical stability, our aptamer holds potential as an alternative to antibodies and nanobodies targeting spike protein.