Published in

arXiv, 2021

DOI: 10.48550/arxiv.2104.00121

American Astronomical Society, Astrophysical Journal, 1(913), p. 57, 2021

DOI: 10.3847/1538-4357/abf3ca

Links

Tools

Export citation

Search in Google Scholar

The JCMT BISTRO-2 Survey: The Magnetic Field in the Center of the Rosette Molecular Cloud

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Question mark in circle
Preprint: policy unknown
Question mark in circle
Postprint: policy unknown
Question mark in circle
Published version: policy unknown

Abstract

Abstract We present the first 850 μm polarization observations in the most active star-forming site of the Rosette Molecular Cloud (d ∼ 1.6 kpc) in the wall of the Rosette Nebula, imaged with the SCUBA-2/POL-2 instruments of the James Clerk Maxwell telescope, as part of the B-Fields In Star-forming Region Observations 2 (BISTRO-2) survey. From the POL-2 data we find that the polarization fraction decreases with the 850 μm continuum intensity with α = 0.49 ± 0.08 in the p ∝ I −α relation, which suggests that some fraction of the dust grains remain aligned at high densities. The north of our 850 μm image reveals a “gemstone ring” morphology, which is a ∼1 pc diameter ring-like structure with extended emission in the “head” to the southwest. We hypothesize that it might have been blown by feedback in its interior, while the B-field is parallel to its circumference in most places. In the south of our SCUBA-2 field the clumps are apparently connected with filaments that follow infrared dark clouds. Here, the POL-2 magnetic field orientations appear bimodal with respect to the large-scale Planck field. The mass of our effective mapped area is ∼174 M , which we calculate from 850 μm flux densities. We compare our results with masses from large-scale emission-subtracted Herschel 250 μm data and find agreement within 30%. We estimate the plane-of-sky B-field strength in one typical subregion using the Davis–Chandrasekhar–Fermi technique and find 80 ± 30 μG toward a clump and its outskirts. The estimated mass-to-flux ratio of λ = 2.3 ± 1.0 suggests that the B-field is not sufficiently strong to prevent gravitational collapse in this subregion.